Quanta energia serviva per andare sulla luna?

Di più
5 Anni 3 Mesi fa #28087 da redazione
Ho ricevuto una lunga dissertazione da una persona che riguarda l'energia necessaria per andare sulla luna. Non essendo in grado di rispondergli, gli ho proposto di pubblicarla qui sul sito.

Si prega Accesso a partecipare alla conversazione.

Di più
5 Anni 3 Mesi fa #28090 da MO62
Gentile Dottore,
Riguardo alla Sua interessante inchiesta sulle missioni lunari Apollo, ma in generale per tutte quelle millantate come tali anche da altri Paesi (Russia molto tempo fa, Cina e India recentemente), per non parlare delle sonde mandate sugli altri pianeti, dobbiamo constatare che prendersi gioco dei più piccoli con menzogne colossali ha infettato un po’ tutte le elite di questo mondo, dall’amministrazione Kennedy in poi. Ciò paga generalmente in termini di consenso e fondi pubblici erogati sotto falso nome, quindi i potenti se ne lasciano facilmente contagiare. Poi rispondono paternamente: “E’ il popolo stesso che ha bisogno periodicamente di sentirsi raccontare una favoletta per sognare e noi lo accontentiamo”.
Però le elite nulla farebbero se non fossero coadiuvati dai comunicatori. Pensiamo solo a Piero Angela, che mise in onda anni fa sulla RAI ben 9 puntate consecutive di Quark riguardanti il tema delle missioni lunari e planetarie, puntate elaborate su un format acquistato negli USA e trasmesse in prima serata. Solo la tradizione cristiana ci tramanda che la menzogna è, in tutti i casi, figlia del diavolo. Perciò Lei, per molti di noi, non è tanto un eroe, quanto piuttosto quello che un tempo si considerava “uomo dotato del primo requisito della santità”, l’amore per la verità.
Lei ha già selezionato ben 42 domande formidabili, che molti possono capire ed ha evitato ragionamenti più complessi. Ma a volte persino su quelli più semplici la gente risponde: “Mah, io non ci capisco nulla, mentre ci sono fior di fisici e ingegneri che hanno studiato e potrebbero pronunciarsi loro. Perché nessuno di loro dice che si tratta di una bufala?”.

Qui allora proverò ad emularLa su un versante che generalmente non viene percorso dagli alfieri della verità e sul quale invece, nel lontano 1982, l’assistente di Fisica Generale I all’Università portò confidenzialmente me ed altri miei compagni di corso a riflettere poco prima del nostro esame. Ripeto, confidenzialmente, poiché altrimenti avrebbe messo a rischio la sua futura carriera.

Il raggio terrestre è di 6.366 km.
L’orbita massima raggiungibile dallo Space Shuttle è stata dichiarata di 643km, cioè 7.009km dal centro della Terra.
Lassù la forza di gravità è di poco inferiore: è l’82,5%, cioè è calata solo del 17,5%, perché il quadrato del raggio, cioè il denominatore nella formula che la quantifica, è aumentato solo del 21,2%.
Supponiamo ora che la NASA decida che lo Space Shuttle si posizioni su un’orbita dieci volte più ampia, cioè debba raggiungere quota 6.430 km dalla superficie terrestre.
Ecco la forza di gravità, sotto forma di percentuali di quella al decollo (cioè prendendo quella al decollo pari al 100%), che incontrerebbe alle varie quote multiple di 643km, cioè da quota 1 (643 km) fino a quota 10 (6.430 km):
82,5 - 62,2 - 58,9 - 50,7 - 44,1 - 38,8 - 34,3 - 30,6 - 27,4 - 24,8 la cui somma, ricordiamocelo qui sotto, fa 461,3%.
Il lavoro da compiere (energia necessaria) per arrivare sulla prima orbita (quota 643km) è dato dalla forza di gravità per lo spostamento da compiere in senso opposto alla forza. Poniamo qui, per semplicità, di prenderli entrambi, forza di gravità al decollo e quota 643 km, come unità di misura, cioè 1x1=1. Quindi definiamo “unità di energia” quella che serve allo Space Shuttle per raggiungere quota 643 km. In altre parole il lavoro che compiva lo Space Shuttle con un pieno carico di combustibile viene preso pari a 1.
Dunque il lavoro che lo Space Shuttle dovrebbe compiere per arrivare dieci volte più lontano, a 6.430km dalla superficie, sarebbe 4,613 volte superiore a quello che di fatto lo Space Shuttle poteva compiere con il pieno di combustibile. Con un integrale potevamo calcolarlo meglio, ma il risultato sarebbe stato di poco inferiore.
Le missioni Apollo, con il razzo vettore multistadio Saturn V, dovevano chiaramente sfondare quel limite di 6.430 km e raggiungere l’orbita lunare sita mediamente a 378.034 km dalla superficie terrestre (384.400-6.366), cioè addirittura 59 volte più lontano del decuplo dell’orbita massima dello Space Shuttle, vale a dire 590 volte 643km.
Ci basti verificare se erano in grado almeno di sfondare il limite del decuplo.

Le misure dichiarate per lo Space Shuttle furono:
- massa di idrogeno (Serbatoio Esterno) a pieno carico 106 t, avente 15.052.000 MJ (megajoule) di energia spendibile;
- massa di alluminio (combustibile ossidabile) (2 Boosters) a pieno carico 160 t, avente 4.960.000 MJ di energia spendibile;
- massa di polibutadiene-acrilonitrile (combustibile ossidabile) (2 Boosters) a pieno carico 120 t, avente 4.800.000 MJ di energia spendibile;
- totale energia spendibile per la messa in orbita del carico 24.812.000 MJ;
- massa complessiva al decollo 2.030 t;
- totale energia spendibile per tonnellata al decollo 12.223 MJ;
- velocità del Veicolo Orbitale raggiunta al distacco dal Serbatoio Esterno 7,800 km/s;
- massa a pieno carico della navicella del personale (Veicolo Orbitale) 109 t;
- massa a vuoto del Veicolo Orbitale 69 t;
- massa di metilidrazina (combustibile ossidabile) sul Veicolo orbitale 6 t.

Le misure dichiarate per l’Apollo furono:
- massa di idrogeno (Stadi II e III) a pieno carico 87 t, avente 12.354.000 MJ di energia spendibile;
- massa di kerosene RP-1 (Stadio I) a pieno carico 624 t, avente 27.754.650 MJ di energia spendibile;
- totale energia spendibile per la messa in orbita del carico 40.108.650 MJ;
- massa complessiva al decollo 2.970 t;
- totale energia spendibile per tonnellata al decollo 13.505 MJ;
- velocità del Modulo di Comando e Servizio al distacco dal Terzo Stadio 7,793 km/s;
- massa a pieno carico della navicella del personale (Modulo di Comando e Servizio) 30 t;
- massa a vuoto del Modulo di Comando e Servizio 12 t;
- massa di metilidrazina (combustibile ossidabile) sul Modulo di Comando e Servizio 7 t.

Innanzitutto occorre osservare che per entrambi i veicoli si è considerato il combustibile ossidabile della navicella del personale (ivi stivato per manovrarla una volta distaccata dal vettore), come facente parte del carico da mettere in orbita e quindi, sebbene insignificante, è stato qui escluso dal calcolo dell’energia spendibile al decollo per la messa in orbita. Dalle rispettive 6 e 7 t di metilidrazina si possono ricavare 198.000 e 231.000 MJ. Dato che le velocità di rientro delle navicelle sono di poco inferiori a quelle del loro rilascio in orbita da parte dei razzi vettori, l’energia cinetica da perdere per poter rientrare a Terra è di 2.099.000 MJ per il vuoto del Veicolo Orbitale (Space Shuttle), e di 361.000 MJ per il vuoto del Modulo di Comando e Servizio (Apollo).
Dunque il Veicolo Orbitale dello Space Shuttle non poteva perdere velocità solo bruciando metilidrazina e contro-espellendo combusto dai motori, ma si doveva affidare quasi interamente all’attrito dell’aria (con piastrelle di ceramica speciale), mentre il Modulo di Comando e Servizio dell’Apollo ce la poteva quasi fare contro-espellendo combusto di metilidrazina e infatti il suo scudo di atterraggio era di materiale fondibile a perdere, perché l’attrito da sopportare era relativamente poco.

Da quanto sopra si evince però un primo dato importante. Il Modulo di Comando e Servizio dell’Apollo aveva già in partenza una scorta massima di combustibile appena sufficiente alla manovra di rientro in atmosfera e non aveva pertanto il combustibile necessario a distaccarsi dal campo gravitazionale della Luna.

Veniamo ora all’elemento di prova più lampante, cioè che il gruppo formato dal Modulo di Comando e Servizio unito al LEM non poteva neanche raggiungere un’orbita terrestre 10 volte più lontana di quella dello Space Shuttle, per poi continuare verso la Luna.

Infatti dal confronto delle rispettive quantità di energia spendibile per tonnellata al decollo si ricava che il Saturn V con i suoi tre stadi non riusciva a raggiungere quell’orbita, ma poteva giusto attestarsi su un’orbita pressoché uguale a quella del suo successore, lo Space Shuttle. La quasi identica velocità di distacco delle navicelle dai rispettivi vettori conferma ulteriormente questa tesi.
In realtà è da quella medesima quota che il Modulo di Comando e Servizio di Apollo 11 iniziava il collocamento del modulo “LEM”, che altro non era che il primo satellite (o mini stazione orbitale di prova), posizionato in orbita bassa terrestre direttamente da una navicella con personale a bordo, il vero successo per cui a Cape Canaveral esultarono la sera del 20.7.1969.
E’ infatti molto importante notare che la serie Apollo segue la serie Gemini, nella quale si erano testate per la prima volta le due operazioni di rendezvous (avvicinamento) e di aggancio, da parte di una navicella con personale a bordo, ad un satellite già precedentemente messo in orbita, allo scopo di correggerne l’orbita o ripararlo. Con Apollo si testò l’operazione di collocamento in orbita di un satellite avvalendosi di un unico lancio, supportato da tre anziché due stadi propulsori, poiché la navicella con personale a bordo veniva per la prima volta montata sullo stesso razzo vettore insieme al satellite e dunque la loro massa complessiva da mettere in orbita era alquanto superiore.

Con lo Shuttle, l’evoluzione di Apollo e di Gemini, si poté effettuare finalmente le operazioni di correzione, riparazione, posa di satelliti, posa di telescopi ed altre attrezzature, forniture per la Stazione Spaziale Internazionale, posa di lanciatori di satelliti, nonché fare esperimenti di laboratorio a bordo, recuperando l’intera navicella e per giunta impiegando una relativamente infima quantità di combustibile (a vantaggio del carico utile), per farla rientrare, avvalendosi principalmente della forza frenante di attrito delle speciali mattonelle in ceramica.

Nelle accademie queste cose sono risapute, sebbene taciute, perché si rischia il posto, sebbene non sia in gioco la salute delle persone e quindi nessuna multinazionale rischierà mai una condanna a risarcire le centinaia di milioni di telespettatori che scambiarono una sceneggiata per una cronaca. Ora, se le bufale spaziali sono sopravvissute 50 anni, quale accademia, occidentale e non, può dirsi autorevole?
Inoltre per analogia dovremmo pensare che, a maggior ragione su quesiti di importanza vitale (energia nucleare, vaccini, OGM, diserbanti, pesticidi, ecc.) che sono stati posti già alla delibazione accademica, proprio per sgombrare il campo da preoccupazioni riguardanti la salute, si debba credere che in quelle sedi pressioni esterne ancora più forti portino ad anteporre il posto e la carriera alla verità.
Gli accademici che mentono sapendo di mentire su questi temi dovrebbero prima o poi (anche con gli eredi) pagare. Non si può mantenere un ordinamento giuridico che permetta loro di farla così franca. Il tribunale che condannasse l'accademico bugiardo farebbe almeno da contraltare al tribunale che condanna la multinazionale al risarcimento e qualcosa di vero comincerebbe ad emergere.

Cordiali Saluti.

Si prega Accesso a partecipare alla conversazione.

Di più
5 Anni 3 Mesi fa #28092 da Mande
Gentile dottore MO62,

Sarebbe in grado di spiegarmi a cosa le serve sommare delle percentuali?

Ecco la forza di gravità, sotto forma di percentuali di quella al decollo (cioè prendendo quella al decollo pari al 100%), che incontrerebbe alle varie quote multiple di 643km, cioè da quota 1 (643 km) fino a quota 10 (6.430 km):
82,5 - 62,2 - 58,9 - 50,7 - 44,1 - 38,8 - 34,3 - 30,6 - 27,4 - 24,8 la cui somma, ricordiamocelo qui sotto, fa 461,3%.


P.S. La prego di non rispondere e evitare di prendere per il naso le persone. Non sono un dottore in fisica ma la fisica di base come questa la comprendo pure io.

Si prega Accesso a partecipare alla conversazione.

Di più
5 Anni 3 Mesi fa #28093 da Maxeed
Non sono un fisico ma conto all'attivo decine di ore di simulatore di Kerball space program quindi posso autodefinirmi un esperto :laugh: :laugh:



Il primo problema fondamentale di questo scritto e' ragionare sulla la quantità di energia necessaria in relazione alla distanza dalla terra e a quanta gravità vi e' presente a quella distanza.

La cosa avrebbe senso se stessimo parlando di un ascensore. Che va esclusivamente su e giu'.

Ne' lo Space Shuttle, ne' le missini apollo andavano SU e Giu, qui stiamo parlando di meccaniche orbitali, sottolineo ORBITALI, ovvero:

- Tutti i corpi sono in caduta libera
- Il fatto di non cadere addosso alla terra (o alla luna) dipende da una sola cosa, la velocità laterale ( o orizzontale).
- Si va nello spazio andando veloci, non andando SU

In altre parole: se se in caduta libera e vai abbastanza veloce ORIZZONTALMENTE manchi la terra e sei in orbita, se vai troppo lento "atterri", se vai troppo veloce ti allontani e cerchi di portare la tua orbita ad intersecare quella di un altro corpo (come la luna) e farti catturare.
L'unico momento in cui satelliti, shuttle e razzi in generale vanno VERTICALI sono i primi 80 / 100 KM, lo fanno per togliersi il prima possibile dall'attrito dell'atmosfera terrestre, poi iniziano a mettersi orizzontali finche' non raggiungono la velocità orbitale richiesta, che dipende dall'altezza voluta.
Per andare su un orbita più alta si accelera, per scendere si rallenta (l'orbita non rimane circolare ma si ovalizza verso il lato opposto della terra, serve quindi un'altra manovra per circolarizzarla)



E in tutte queste giravolte il veicolo spaziale e' SEMPRE in caduta libera e sotto il pieno effetto gravitazionale, che diminuisce si con il quadrato della distanza, ma che al lato pratico non interessa: e' tutta una questione di velocità (Delta-V) e di massa.

Fatta questa dovuta premessa andiamo al cuore della questione:

L’orbita massima raggiungibile dallo Space Shuttle è stata dichiarata di 643km, cioè 7.009km dal centro della Terra.
Lassù la forza di gravità è di poco inferiore: è l’82,5%, cioè è calata solo del 17,5%, perché il quadrato del raggio, cioè il denominatore nella formula che la quantifica, è aumentato solo del 21,2%.
Supponiamo ora che la NASA decida che lo Space Shuttle si posizioni su un’orbita dieci volte più ampia, cioè debba raggiungere quota 6.430 km dalla superficie terrestre.


Una quota dieci volte piu' lontana al limite e' di 70.000 KM, 10 volte 7009 KM, l'orbita massima dello shuttle (a pieno carico?)

Ecco la forza di gravità, sotto forma di percentuali di quella al decollo (cioè prendendo quella al decollo pari al 100%), che incontrerebbe alle varie quote multiple di 643km, cioè da quota 1 (643 km) fino a quota 10 (6.430 km):
82,5 - 62,2 - 58,9 - 50,7 - 44,1 - 38,8 - 34,3 - 30,6 - 27,4 - 24,8 la cui somma, ricordiamocelo qui sotto, fa 461,3%.


Quindi? come detto i veicoli non vanno su. Vanno veloci. Integra finche vuoi ma non e' corretto.

Il lavoro da compiere (energia necessaria) per arrivare sulla prima orbita (quota 643km) è dato dalla forza di gravità per lo spostamento da compiere in senso opposto alla forza.


Se fosse un ascensore si, invece nel mondo reale il lavoro da compiere per arrivare all'orbita e' dato dalla velocità necessaria per mantenere quell'orbita vincendo la resistenza della massa da accelerare (che man mano scende quindi serve meno energia a parità di aumento di velocità ) e i primi 100km di attrito dell'atmosfera.

Poniamo qui, per semplicità, di prenderli entrambi, forza di gravità al decollo e quota 643 km, come unità di misura, cioè 1x1=1. Quindi definiamo “unità di energia” quella che serve allo Space Shuttle per raggiungere quota 643 km. In altre parole il lavoro che compiva lo Space Shuttle con un pieno carico di combustibile viene preso pari a 1.


OK

Dunque il lavoro che lo Space Shuttle dovrebbe compiere per arrivare dieci volte più lontano, a 6.430km dalla superficie, sarebbe 4,613 volte superiore a quello che di fatto lo Space Shuttle poteva compiere con il pieno di combustibile. Con un integrale potevamo calcolarlo meglio, ma il risultato sarebbe stato di poco inferiore.
Le missioni Apollo, con il razzo vettore multistadio Saturn V, dovevano chiaramente sfondare quel limite di 6.430 km e raggiungere l’orbita lunare sita mediamente a 378.034 km dalla superficie terrestre (384.400-6.366), cioè addirittura 59 volte più lontano del decuplo dell’orbita massima dello Space Shuttle, vale a dire 590 volte 643km.


No, il ragionamento e' sbagliato sotto molti aspetti, ma quello piu' imbarazzante e' che il razzo non si e' messo in un'orbita CIRCOLARE intorno alla terra alla stessa distanza dalla luna (che richiede molta piu' energia), ma in un orbita fortemente ellittica di intercettazione.


Nelle accademie queste cose sono risapute, sebbene taciute, perché si rischia il posto,


Ci credo che si rischia il posto, se bastano poche ore con un videogioco per capire che il ragionamento non torna, figuriamoci una laurea in astrofisica.

Si prega Accesso a partecipare alla conversazione.

Di più
5 Anni 3 Mesi fa - 5 Anni 3 Mesi fa #28096 da rafterry
Gentile MO62,
Lei considera l'energia esclusivamente Potenziale, il che è un errore molto grave in quanto siamo in presenza della sola forza di Gravità, ossia una forza conservativa, quindi vale il "Teorema di conservazione dell'energia meccanica": la somma dell'energia cinetica e dell'energia potenziale di un punto (il SaturnV non è un punto, ma puo' essere assimilato come tale con la massa che gli diamo noi) che si muove sotto l’azione di forze conservative resta costante durante tutto il moto.

Energia Potenziale (che dipende dalla quota)
L = Integrale da a a b F•ds = + U(ra) - U(rb) = - DU
Energia Cinetica (che dipende dalla velocità)
L = ½m v(exp2) finale - ½m v(exp2) iniziale = Tf - Ti

Il razzo inizialmente ha energia potenziale altissima, immagazzinata come energia chimica del combustibile ed energia cinetica zero. Alla fine dell'ACCELERAZIONE necessaria al razzo per raggiungere LA VELOCITA' DI FUGA (11,2 km/s) avrà energia potenziale molto bassa ed energia cinetica molto alta. Una volta raggiunta la velocità di fuga ( it.wikipedia.org/wiki/Velocit%C3%A0_di_fuga ) possiamo andare dove le pare senza addurre ulteriore spinta, anche su Marte. Ma finchè sono in presenza di forze conservative l'energia sarà sempre la stessa che avevo quando sono partito.

Mi aspetto che il resto del ragionamento postati da lei sia errato in più punti, come ad esempio sommare le percentuali. Perché?
Questo ragionamento la conduce ad affermare che portare un razzo in quota a 6430 km è energeticamente più dispendioso di 4613 volte rispetto all'energia necessaria che portarlo a 643 km: questa è una BOIATA PAZZESCA perché, come le ho detto prima, siamo in presenza di una forza conservativa (GRAVITA') e il Lavoro speso è proporzionale unicamente alla quota. Quindi se per semplicità di conti facciamo lo sforzo immaginifico di considerare la gravità a 6430km UGUALE alla gravità a 643 km di quota, l'energia spesa sarebbe superiore di 10 volte, non di 4613. Viaggiando verso lo spazio aperto tale lavoro è addirittura inferiore, perché come dice giustamente lei la gravità terrestre si riduce, ma di quanto meno lascio che sia lei a farsi i conti.

Il resto dei dati circa i pesi e i poteri calorifici dei combustibili non mi metto neanche a verificarli perché ad occhio siamo lontani da un ragionamento prettamente scientifico, forse ha frainteso un pelino quell'assistente di fisica. Sono sicuro però che se si rifacesse bene i conti con i nuovi dati che le ho fornito scoprirebbe che alla fine l'uomo, nonostante la sua scarsa evoluzione, sia effettivamente in grado di mandare pezzi di latta nello spazio da quasi 60 anni… uomini non lo so, ma pezzi di latta di sicuro..

Saluti
Ultima Modifica 5 Anni 3 Mesi fa da rafterry.

Si prega Accesso a partecipare alla conversazione.

Di più
5 Anni 3 Mesi fa #28097 da MO62
Chiedo cortesemente ai partecipanti di non eludere la questione.
Costoro potevano effettivamente rilevare una mia taciuta congettura, che non riguardava, né la forma dell’orbita (ellittica o circolare), né la velocità di fuga che attiene pur sempre ad un’orbita ellittica, come quella delle comete ricorrenti.

Nella mia dissertazione iniziale l’assunto che il lavoro compiuto dallo Space Shuttle per raggiungere quota 643 km dalla superficie terrestre fosse 1x1, cioè forza di gravità presa come unitaria moltiplicato la distanza presa come unitaria, poteva obbiettare che nella realtà la forza di gravità agente sul veicolo diminuisce via via che le masse del combustibile e dell’ossidante fuoriescono combinate dai motori, fino ad esaurirsi una volta raggiunta tale quota. Dunque qualcuno poteva obbiettare che l’energia necessaria allo Space Shuttle per raggiungere quota 643 km è inferiore a quella da me ipotizzata.

Tuttavia il mio ragionamento non cambia, perché io ho assunto come unitaria proprio questa energia a prescindere da come si è arrivati a calcolarla. E ho concluso che per raggiungere quota 6.430 km occorreva 4,613 volte quella energia (non ho scritto 4.613 volte, siamo in Italia e vale la virgola prima dei decimali).
Cioè ho ipotizzato che da quota 643 km a quota 6.430 km lo Space Shuttle proseguisse con i serbatoi scarichi ed un angelo gli fornisse, istante dopo istante, il combustibile e l’ossidante necessari a proseguire il viaggio.
Se volessimo fare a meno dell’angelo, cioè se volessimo realizzare concretamente l’operazione di messa in orbita a 6.430 km dovremmo caricare serbatoi aggiuntivi prima del decollo, ma a quel punto dovremmo ricalcolare l’energia necessaria a raggiungere quota 643 km e ci accorgeremmo che è aumentata proporzionalmente all’aumento del carico, poiché uno dei suoi due fattori, la forza di gravità, è aumentata proporzionalmente all’aumento del carico. Dunque lo Space Shuttle per raggiungere quota 6.430 km senza l’angelo erogatore consumerebbe una quantità di energia molto superiore a 4,613 volte quella impiegata per raggiungere quota 643 km.

Ciò vale di pari passo anche per l’energia impiegata per tonnellata al decollo, che è la grandezza su cui abbiamo focalizzato l’attenzione per fare un confronto con l’Apollo.
Quindi dopo questa precisazione la mia tesi risulta rafforzata.

Si prega Accesso a partecipare alla conversazione.

Tempo creazione pagina: 0.347 secondi
Powered by Forum Kunena