- Messaggi: 723
- Ringraziamenti ricevuti 247
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Ecco la forza di gravità, sotto forma di percentuali di quella al decollo (cioè prendendo quella al decollo pari al 100%), che incontrerebbe alle varie quote multiple di 643km, cioè da quota 1 (643 km) fino a quota 10 (6.430 km):
82,5 - 62,2 - 58,9 - 50,7 - 44,1 - 38,8 - 34,3 - 30,6 - 27,4 - 24,8 la cui somma, ricordiamocelo qui sotto, fa 461,3%.
Accedi al sito per partecipare alle discussioni.
L’orbita massima raggiungibile dallo Space Shuttle è stata dichiarata di 643km, cioè 7.009km dal centro della Terra.
Lassù la forza di gravità è di poco inferiore: è l’82,5%, cioè è calata solo del 17,5%, perché il quadrato del raggio, cioè il denominatore nella formula che la quantifica, è aumentato solo del 21,2%.
Supponiamo ora che la NASA decida che lo Space Shuttle si posizioni su un’orbita dieci volte più ampia, cioè debba raggiungere quota 6.430 km dalla superficie terrestre.
Ecco la forza di gravità, sotto forma di percentuali di quella al decollo (cioè prendendo quella al decollo pari al 100%), che incontrerebbe alle varie quote multiple di 643km, cioè da quota 1 (643 km) fino a quota 10 (6.430 km):
82,5 - 62,2 - 58,9 - 50,7 - 44,1 - 38,8 - 34,3 - 30,6 - 27,4 - 24,8 la cui somma, ricordiamocelo qui sotto, fa 461,3%.
Il lavoro da compiere (energia necessaria) per arrivare sulla prima orbita (quota 643km) è dato dalla forza di gravità per lo spostamento da compiere in senso opposto alla forza.
Poniamo qui, per semplicità, di prenderli entrambi, forza di gravità al decollo e quota 643 km, come unità di misura, cioè 1x1=1. Quindi definiamo “unità di energia” quella che serve allo Space Shuttle per raggiungere quota 643 km. In altre parole il lavoro che compiva lo Space Shuttle con un pieno carico di combustibile viene preso pari a 1.
Dunque il lavoro che lo Space Shuttle dovrebbe compiere per arrivare dieci volte più lontano, a 6.430km dalla superficie, sarebbe 4,613 volte superiore a quello che di fatto lo Space Shuttle poteva compiere con il pieno di combustibile. Con un integrale potevamo calcolarlo meglio, ma il risultato sarebbe stato di poco inferiore.
Le missioni Apollo, con il razzo vettore multistadio Saturn V, dovevano chiaramente sfondare quel limite di 6.430 km e raggiungere l’orbita lunare sita mediamente a 378.034 km dalla superficie terrestre (384.400-6.366), cioè addirittura 59 volte più lontano del decuplo dell’orbita massima dello Space Shuttle, vale a dire 590 volte 643km.
Nelle accademie queste cose sono risapute, sebbene taciute, perché si rischia il posto,
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
OTMO62 ha scritto: (non ho scritto 4.613 volte, siamo in Italia e vale la virgola prima dei decimali).
Accedi al sito per partecipare alle discussioni.
Questa è evidentemente una sciocchezza, dato che la velocità di fuga è per definizione la velocità necessaria per imprimere ad un oggetto una traiettoria parabolica che si allontana indefinitamente dal corpo celeste considerato, nel nostro caso la Terra. E' noto che la velocità di fuga è √2 volte la velocità orbitale a "quota zero", ne segue (passando all'energia cinetica del corpo) che l'energia necessaria ad allontanare indefinitamente un oggetto è il doppio di quella che occorre per immetterlo in un'orbita bassa. Trascurando l'esistenza dell'atmosfera, ma ci arrivo tra un attimo.MO62 ha scritto: Chiedo cortesemente ai partecipanti di non eludere la questione.
Costoro potevano effettivamente rilevare una mia taciuta congettura, che non riguardava, né la forma dell’orbita (ellittica o circolare), né la velocità di fuga che attiene pur sempre ad un’orbita ellittica, come quella delle comete ricorrenti.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
The Apollo 11 CSM mass of 28,801 kg was the launch mass including propellants and expendables, of this the Command Module (CM 107) had a mass of 5557 kg and the Service Module (SM 107) 23,244 kg.
The lunar module was a two-stage vehicle designed for space operations near and on the Moon. The spacecraft mass of 15103 kg was the total mass of the LM ascent and descent stages including propellants (fuel and oxidizer). The dry mass of the ascent stage was 2445 kg and it held 2376 kg of propellant. The descent stage dry mass (including stowed surface equipment) was 2034 kg and 8248 kg of propellant were onboard initially.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Quindi, senza andare troppo per il sottile andando a verificare che effettivamente il Saturn V abbia seguito perfettamente una traiettoria parallela alla linea immaginaria a latitudine costante sotto di lui, citando Wikipedia...la Terra, pur considerata fissa, sta ruotando su se stessa, quindi al momento della partenza il razzo ha una sua velocità tangenziale che è funzione della latitudine del punto di lancio, motivo per cui si cerca di massimizzare questa velocità cercando di partire da luoghi quanto più vicini all'equatore, puntando poi la traiettoria di volo verso Est, quindi in verso positivo alla rotazione [...] Quindi, sfuttando quanto più possibile la velocità tangenziale di partenza (che all'equatore è di circa 465m/s), alla velocità orbitale di riferimento che dobbiamo ottenere spendendo energia possiamo e dobbiamo togliere la velocità di partenza che già abbiamo in partenza per il solo fatto di ruotare insieme alla Terra.
[N.d.R. vabbé, più che la spinta in Newton, è solo la velocità, ma ci basta il senso del discorso]La spinta verso est della rotazione della Terra è circa 405 m/s
che sono, a 214 kg/sec, 727,6 kg di propellente consumato in più del previsto, praticamente l'1% di quello che poi sarà consumato per il TLI.S-IVB burn duration was 147,1 seconds which was 3.4 seconds more than predicted
Anche in questo caso vengono fatte considerazioni sul fatto che i discostamenti percentuali tra il dato previsto e quello reale rientravano nelle tolleranze.S-IVB second burn duration was 346,9 seconds which was 1,7 seconds less tha predicted
Andiamo innanzitutto dall'oste a vedere cosa dice del suo vino buono
Accedi al sito per partecipare alle discussioni.
Accedi al sito per partecipare alle discussioni.
Usando le formule che ho mostrato sopra si può calcolare quale sia la velocità orbitale per raggiungere con una manovra alla Hohmann la Luna. La distanza media tra la Terra e la Luna è di circa rf = 3.84E+08 m (384000km), quindi un'eventuale orbita che raggiunga la Luna ha un semiasse pari a (ri + rf)/2Non vedo ancora come si possa affermare che grossomodo 73,352 t erano sufficienti alla presunta TLI.
Accedi al sito per partecipare alle discussioni.